More on One-to-one Functions and Onto Functions and One-to-one and Onto Functions

Theorem (NIB) 9 (Solutions to Sec 7.3, #18 and #19):

```
Let f: X \to Y and g: Y \to Z be functions. Then, g \circ f: X \to Z.
```

- 1) If $g \circ f$ is one-to-one, then f is one-to-one. (f is applied *first*.)
- 2) If $g \circ f$ is onto, then g is onto. (g is applied *last*.)

Proof: (by contraposition)

- 1) Suppose that f is not one-to-one. [NTS: g of is not one-to-one.]
 - \therefore There exist elements $u \in X$ and $v \in X$ are such that

$$f(u) = f(v)$$
 and $u \neq v$. $\therefore g(f(u)) = g(f(v))$ and $u \neq v$.

- \therefore $(g \circ f)(u) = (g \circ f)(v)$ and $u \neq v$. \therefore $(g \circ f)$ is not one-to-one.
- \therefore If $(g \circ f)$ is one-to-one, then f is one-to-one.
- 2) Suppose that g is not onto. [NTS: g ∘ f is not onto.]
 - .. There exists an element $z_0 \in Z$ such that $g(y) \neq z_0$, for all $y \in Y$. Suppose x is any element of X. Let $y_0 = f(x) \in Y$.

$$\therefore g(y_0) \neq z_0 . \therefore g(f(x)) \neq z_0 . \therefore (g \circ f)(x) \neq z_0 .$$

- \therefore \forall $x \in X$, $(g \circ f)(x) \neq z_0$. \therefore $(g \circ f)$ is not onto.
- \therefore If $(g \circ f)$ is onto, then g is onto. QED

<u>Theorem (NIB) 10</u>: Let $f: X \to Y$ and $g: Y \to X$ be functions.

If
$$g \circ f = i_X$$
 and $f \circ g = i_Y$,

then f is a one-to-one correspondence and $g = f^{-1}$.

Proof: Recall:
$$i_X(x) = x, \forall x \in X$$
, and $i_Y(y) = y, \forall y \in Y$.

Since i_X is one-to-one and since f is applied first in $g \circ f$,

f is one-to-one by Part 1) of Theorem (NIB) 4.

Since f_Y is onto and since f is applied last in $f \circ g$,

f is onto Part 2) of Theorem (NIB) 4.

∴ f is a one-to-one correspondence.

The proof that $g = f^{-1}$ is left as an exercise. (#25 of Sec. 7.3) Q E D

"The Test for a One-to-one Correspondence":

Theorem (NIB) 10 can be used to prove that a function f is a one-to-one correspondence by taking the following steps:

Step 1) Compute what the formula for $g = f^{-1}$ should be.

Step 2) Show that $g \circ f = i_X$ and $f \circ g = i_Y$; that is, show that g(f(x)) = x, for all $x \in X$, and that f(g(y)) = y, for all $y \in Y$.

Example Problem:

Using the "Test for a One-to-one Correspondence", prove that f is a one-to-one correspondence from \mathbb{R} to \mathbb{R}^+ , where:

For all
$$x \in \mathbb{R}$$
, $f(x) = 5e^{3x} \in \mathbb{R}^+$.

Solution: Recall that, $\forall x \in \mathbb{R}$, $e^{\ln x} = x$, and $\forall y \in \mathbb{R}^+$, $\ln(e^y) = y$.

Step 1) Compute what the formula for $g = f^{-1}$ should be:

$$g(y) = x \Leftrightarrow f^{-1}(y) = x \Leftrightarrow f(x) = y \Leftrightarrow 5e^{3x} = y \Leftrightarrow e^{3x} = y/5$$

$$\Leftrightarrow 3x = \ln\left(\frac{y}{5}\right) \Leftrightarrow x = \frac{1}{3}\ln\left(\frac{y}{5}\right)$$

Define function $g: \mathbb{R}^+ \to \mathbb{R}$ as follows: For all $y \in \mathbb{R}^+$, $g(y) = \frac{1}{3} \ln \left(\frac{y}{5} \right)$.

Step 2) Show that $g \circ f = i_X$ and $f \circ g = i_Y$; that is, show that g(f(x)) = x, for all $x \in X$, and that f(g(y)) = y, for all $y \in Y$.

$$f(g(y)) = f\left(\frac{1}{3}\ln\left(\frac{y}{5}\right)\right) = 5e^{\left(3\left(\frac{1}{3}\ln\left(\frac{y}{5}\right)\right)\right)} = 5e^{\left(\ln\left(\frac{y}{5}\right)\right)} = 5\frac{y}{5} = y$$

$$g(f(x)) = g(5e^{3x}) = \frac{1}{3}\ln\left(\frac{5e^{3x}}{5}\right) = \frac{1}{3}\ln(e^{3x}) = \frac{1}{3}3x = x$$

Therefore, f is a one-to-one correspondence and $g = f^{-1}$ by Theorem (NIB) 10.